Панорама современного естествознания

1985 год — 32-разрядный процессор 1386, в котором 275 тыс. транзисторов, быстродействие — 5 млн операций в секунду.

1989 год — микропроцессор I486; содержит 1,2 млн транзисторов, быстродействие — 20 MIPS.

1993 год — микропроцессор Pentium; 3,1 млн транзисторов; производительность 90 MIPS.

1995 год — Pentium-Pro, 5,5 млн транзисторов, производительность 300 MIPS.

Этот фантастический прогресс — результат глубоких исследований и миллиардных капвложений.

Один из путей развития электроники — создание микросхем на основе белковых структур. Вот первые результаты: японская фирма «Сантори ЛТД» создала первые образцы так называемых биочипов — микросхем, выполняющих функции электронной памяти на основе искусственно выращенных белковых структур. По оценкам японских специалистов в ближайшем будущем емкость памяти микросхем на биочипах превысит емкость памяти микросхем, выполненных на полупроводниковых кристаллах, в 109 (в миллиард) раз.

Сравнивая современный персональный компьютер с громоздкой ЭВМ первого поколения, мы видим, как высоко мы поднялись. Сравнивая тот же компьютер с мозгом, мы понимаем, что до уровня совершенства, которого путем длительной эволюции достигла природа, нам пока еще весьма далеко.

Нейронные сети чрезвычайно компактны: 1011 нейронов мозга уместились в объеме 1,5 литра. Сеть из 1011 искусственных электронных нейронов, выполненная на обладающих самой высокой степенью интеграции микросхемах, получилась бы величиной с жилой дом. Причем этот гигантский искусственный мозг был бы весьма примитивен по сравнению не только с человеческим мозгом, но и с мозгом животных. Мозг курицы сравнительно примитивен. Ее интеллект не способен усвоить даже простые арифметические действия сложения, вычитания или умножения. Зато курица находит зерно среди травы, мелких камешков, разного мусора. Подобную операцию пока неспособно выполнить созданное для распознавания зрительных образов электронное устройство.

В последние десятилетия ведутся активные исследования по проблеме искусственного интеллекта. Когда работа по моделированию только начиналась, казалось, что достаточно увеличить быстродействие машины и объем памяти — и проблема будет решена, но потом стало ясно, что проблема не сводится к перебору множества вариантов. Тогда встала чисто теоретическая проблема: а что такое мышление? Ответить на этот вопрос не так просто. Мышление не сводится к решению задач. Это еще и творчество, целеполагание, умение задачу сформулировать. Поэтому если даже мы сумеем смоделировать работу мозга, неизбежно встает вопрос: какую программу в этот искусственный мозг надо закладывать? Если программа задается человеком, то искусственный интеллект — это просто орудие для усиления человеческого мышления. Так, бинокль усиливает возможности наших глаз, но он не может видеть. Если искусственный интеллект сам создает себе программы, т. е. воспроизводит одну из важнейших функций интеллекта — творчество, тогда возникает проблема цели «ради чего»? Цели человеческой деятельности и мышления задает общество, в котором живет человек. Следовательно, искусственный интеллект необходимо «социализировать», ввести в социум, сделать его реальным членом общества, наделить чувствами, эмоциями, волей. Но где гарантии, что цели искусственного интеллекта и цели общества совпадут? Все эти вопросы показывают, что проблема искусственного интеллекта — это не только техническая проблема, но и проблема философская, гуманитарная. Для ее решения необходимо объединить усилия ученых различных направлений.

Перейти на страницу:
7 8 9 10 11 12 13 14 15 16 17